要求可以交换位置的两个数的最大公约数是数组中的最小数,可以想到先把数组中的最小数找出来,设为 $x$,这样可以让 $x$ 去和所有能够被 $x$ 整除的数字交换,因为不限操作次数,所以这些数字可以一直交换到有序。接下来考虑不能被 $x$ 整除的数字,可以发现它们的位置是永远不变的,因此只需要把数组排好序之后,检查它们的位置是否保持不变即可。
// Date: Mon Dec 11 23:33:35 2023
#include <climits>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <utility>
#include <vector>
using namespace std;
const int INF = 0x3f3f3f3f, MOD = 1e9 + 7;
const double eps = 1e-8;
const int dir[8][2] = {
{0, 1}, {0, -1}, {1, 0}, {-1, 0}, {1, 1}, {1, -1}, {-1, 1}, {-1, -1},
};
typedef long long ll;
typedef unsigned long long ull;
typedef vector<int> VI;
typedef pair<int, int> PII;
const ull Pr = 131;
#define For(i, a, b) for (int i = int(a); i < int(b); ++i)
#define Rof(i, a, b) for (int i = int(b) - 1; i >= int(a); --i)
#define For1(i, a, b) for (int i = int(a); i <= int(b); ++i)
#define Rof1(i, a, b) for (int i = int(b); i >= int(a); --i)
#define ForE(i, j) for (int i = h[j]; i != -1; i = ne[i])
#define f1 first
#define f2 second
#define pb push_back
#define has(a, x) (a.find(x) != a.end())
#define nonempty(a) (!a.empty())
#define all(a) (a).begin(), (a).end()
#define SZ(a) int((a).size())
#ifdef _DEBUG
#define debug1(x) cout << #x " = " << x << endl;
#define debug2(x, y) cout << #x " = " << x << " " #y " = " << y << endl;
#define debug3(x, y, z) \
cout << #x " = " << x << " " #y " = " << y << " " #z " = " << z << endl;
#else
#define debug1
#define debug2
#define debug3
#endif
const int N = 100010;
int t, n, a[N], b[N];
int main(void) {
#ifdef _DEBUG
freopen("1401c.in", "r", stdin);
#endif
std::ios::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
cin >> t;
while (t--) {
cin >> n;
For1(i, 1, n) {
cin >> a[i];
b[i] = a[i];
}
bool flag = true;
int mi = a[1];
For1(i, 2, n) {
if (a[i] < a[i - 1]) {
flag = false;
}
mi = min(mi, a[i]);
}
if (flag) {
cout << "YES\n";
continue;
}
sort(b + 1, b + 1 + n);
flag = true;
For1(i, 1, n) {
if (b[i] % mi == 0)
continue;
if (b[i] != a[i]) {
flag = false;
break;
}
}
cout << (flag ? "YES" : "NO") << '\n';
}
return 0;
}