观察到 $\gcd(i, i + 1) = 1$,可以利用这一点来构造,先找到数组最小的值 $a_{pos}$,对于第 $i$ 个位置 $a_i = a_{pos} + abs(pos - i)$,这样可以保证任意两个相邻的位置的 $gcd(a_j, a_{j + 1}) = 1$,由于 $a_{pos}$ 是最小的,每次操作可以让 $a_{pos}$ 的位置保持不变。
// Date: Fri Dec 15 10:43:00 2023
#include <climits>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <utility>
#include <vector>
using namespace std;
const int INF = 0x3f3f3f3f, MOD = 1e9 + 7;
const double eps = 1e-8;
const int dir[8][2] = {
{0, 1}, {0, -1}, {1, 0}, {-1, 0}, {1, 1}, {1, -1}, {-1, 1}, {-1, -1},
};
typedef long long ll;
typedef unsigned long long ull;
typedef vector<int> VI;
typedef pair<int, int> PII;
const ull Pr = 131;
#define For(i, a, b) for (int i = int(a); i < int(b); ++i)
#define Rof(i, a, b) for (int i = int(b) - 1; i >= int(a); --i)
#define For1(i, a, b) for (int i = int(a); i <= int(b); ++i)
#define Rof1(i, a, b) for (int i = int(b); i >= int(a); --i)
#define ForE(i, j) for (int i = h[j]; i != -1; i = ne[i])
#define f1 first
#define f2 second
#define pb push_back
#define has(a, x) (a.find(x) != a.end())
#define nonempty(a) (!a.empty())
#define all(a) (a).begin(), (a).end()
#define SZ(a) int((a).size())
#ifdef _DEBUG
#define debug1(x) cout << #x " = " << x << endl;
#define debug2(x, y) cout << #x " = " << x << " " #y " = " << y << endl;
#define debug3(x, y, z) \
cout << #x " = " << x << " " #y " = " << y << " " #z " = " << z << endl;
#else
#define debug1
#define debug2
#define debug3
#endif
const int N = 500010;
int t, n, a[N];
struct point {
int i, j, x, y;
};
int gcd(int x, int y) { return y == 0 ? x : gcd(y, x % y); }
int main(void) {
#ifdef _DEBUG
freopen("1521b.in", "r", stdin);
#endif
std::ios::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
cin >> t;
while (t--) {
cin >> n;
For1(i, 1, n) { cin >> a[i]; }
vector<point> res;
PII mi{INF, -1};
For1(i, 1, n) {
if (a[i] < mi.f1) {
mi = {a[i], i};
}
}
bool flag = true;
For1(i, 1, n - 1) {
if (gcd(a[i], a[i + 1]) > 1) {
flag = false;
break;
}
}
if (flag) {
cout << "0\n";
continue;
}
For1(i, 1, n) {
if (i == mi.f2)
continue;
res.pb({i, mi.f2, mi.f1 + abs(i - mi.f2), mi.f1});
}
int len = SZ(res);
cout << len << '\n';
if (len) {
for (auto e : res) {
cout << e.i << ' ' << e.j << ' ' << e.x << ' ' << e.y << '\n';
}
}
}
return 0;
}