挺有趣的一道题。
这题并不能简单地 DP 做,不能最大化 Alice 的收益,此时 Bob 的收益并不是最小。
观察 Alice 的路径,形式是 $Z$ 字型。此时 Bob 只能选择上侧或者下侧,上侧是第一行的后缀和,下侧是第二行的前缀和,只需要让它们的最大值最小即可,线性扫一遍。
// Date: Thu Dec 21 20:11:59 2023
#include <climits>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <utility>
#include <vector>
using namespace std;
const int INF = 0x3f3f3f3f, MOD = 1e9 + 7;
const double eps = 1e-8;
const int dir[8][2] = {
{0, 1}, {0, -1}, {1, 0}, {-1, 0}, {1, 1}, {1, -1}, {-1, 1}, {-1, -1},
};
typedef long long ll;
typedef unsigned long long ull;
typedef vector<int> VI;
typedef pair<int, int> PII;
const ull Pr = 131;
#define For(i, a, b) for (int i = int(a); i < int(b); ++i)
#define Rof(i, a, b) for (int i = int(b) - 1; i >= int(a); --i)
#define For1(i, a, b) for (int i = int(a); i <= int(b); ++i)
#define Rof1(i, a, b) for (int i = int(b); i >= int(a); --i)
#define ForE(i, j) for (int i = h[j]; i != -1; i = ne[i])
#define f1 first
#define f2 second
#define pb push_back
#define has(a, x) (a.find(x) != a.end())
#define nonempty(a) (!a.empty())
#define all(a) (a).begin(), (a).end()
#define SZ(a) int((a).size())
template <typename t> istream &operator>>(istream &in, vector<t> &vec) {
for (t &x : vec)
in >> x;
return in;
}
template <typename t> ostream &operator<<(ostream &out, vector<t> &vec) {
int n = SZ(vec);
For(i, 0, n) {
out << vec[i];
if (i < n - 1)
out << ' ';
}
return out;
}
#ifdef _DEBUG
#define debug1(x) cout << #x " = " << x << endl;
#define debug2(x, y) cout << #x " = " << x << " " #y " = " << y << endl;
#define debug3(x, y, z) \
cout << #x " = " << x << " " #y " = " << y << " " #z " = " << z << endl;
#else
#define debug1
#define debug2
#define debug3
#endif
const int N = 100010;
int t, n, a[5][N];
ll d[5][N];
PII p[5][N];
int main(void) {
#ifdef _DEBUG
freopen("1555c.in", "r", stdin);
#endif
std::ios::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
cin >> t;
while (t--) {
cin >> n;
For1(i, 1, 2) {
For1(j, 1, n) { cin >> a[i][j]; }
}
ll res = INF;
memset(d, 0, sizeof d);
Rof1(i, 1, n) { d[1][i] = d[1][i + 1] + a[1][i]; }
For1(i, 1, n) { d[2][i] = d[2][i - 1] + a[2][i]; }
For1(i, 1, n) {
ll tmp = max(d[1][i + 1], d[2][i - 1]);
res = min(res, tmp);
}
cout << res << '\n';
}
return 0;
}