边的个数只有 100,点的个数最多有 200,因此可以使用 floyd 求出所有全源最短路。对于原字符串 $s$,设 $dp[i]$ 为前使得 $s[1, i]$ 区间内的字符和 $t[1, i]$ 相等的最小代价,那么有 $dp_i = min(dp_i, dp_{i - len_j} + d[x_j][y_j])$,其中 $len_j$ 为替换的字符串 $x_j$ 的长度,$d[x_j][y_j]$ 为从点 $x_j$ 到 $y_j$ 的最短路,之前使用 floyd 已经求出。所以只需要枚举要替换的字符串的长度即可,题目有点卡常数,暴力枚举长度范围 $[1, 1000]$ 会超时,先统计出 100 条边的所有的长度,这样长度的范围只有 $100$。
// Date: Sun Dec 24 17:39:37 2023
#include <climits>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <utility>
#include <vector>
using namespace std;
const int INF = 0x3f3f3f3f, MOD = 1e9 + 7;
const double eps = 1e-8;
const int dir[8][2] = {
{0, 1}, {0, -1}, {1, 0}, {-1, 0}, {1, 1}, {1, -1}, {-1, 1}, {-1, -1},
};
typedef long long ll;
typedef unsigned long long ull;
typedef vector<int> VI;
typedef pair<int, int> PII;
const ull Pr = 131;
#define LN ListNode
#define LNP ListNode *
#define TN TreeNode
#define TNP TreeNode *
#define For(i, a, b) for (int i = int(a); i < int(b); ++i)
#define Rof(i, a, b) for (int i = int(b) - 1; i >= int(a); --i)
#define For1(i, a, b) for (int i = int(a); i <= int(b); ++i)
#define Rof1(i, a, b) for (int i = int(b); i >= int(a); --i)
#define ForE(i, j) for (int i = h[j]; i != -1; i = ne[i])
#define f1 first
#define f2 second
#define pb push_back
#define has(a, x) (a.find(x) != a.end())
#define nonempty(a) (!a.empty())
#define all(a) (a).begin(), (a).end()
#define SZ(a) int((a).size())
#ifdef _DEBUG
#define debug1(x) cout << #x " = " << x << endl;
#define debug2(x, y) cout << #x " = " << x << " " #y " = " << y << endl;
#define debug3(x, y, z) \
cout << #x " = " << x << " " #y " = " << y << " " #z " = " << z << endl;
#else
#define debug1
#define debug2
#define debug3
#endif
#ifdef _DEBUG
struct ListNode {
int val;
ListNode *next;
ListNode() : val(0), next(nullptr) {}
ListNode(int val) : val(val), next(nullptr) {}
ListNode(int val, ListNode *next) : val(val), next(next) {}
};
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right)
: val(x), left(left), right(right) {}
};
#endif
const int N = 300;
ll d[N][N], dp[1010];
class Solution {
public:
long long minimumCost(string s, string t, vector<string> &a,
vector<string> &b, vector<int> &cost) {
const ll INF = 0x3f3f3f3f'3f3f3f3f;
s = " " + s;
t = " " + t;
int n = SZ(s), m = SZ(b), idx = 1;
unordered_map<string, int> vis;
For(i, 0, m) {
if (!has(vis, a[i])) {
vis[a[i]] = idx++;
}
if (!has(vis, b[i])) {
vis[b[i]] = idx++;
}
}
For(i, 1, idx) {
For(j, 1, idx) {
if (i == j)
d[i][j] = 0;
else
d[i][j] = INF;
}
}
For(i, 0, m) {
int x = vis[a[i]], y = vis[b[i]];
d[x][y] = min(d[x][y], ll(cost[i]));
}
For(k, 1, idx) {
For(i, 1, idx) {
For(j, 1, idx) { d[i][j] = min(d[i][j], d[i][k] + d[k][j]); }
}
}
memset(dp, 0x3f, sizeof dp);
dp[0] = 0;
int i = 1;
while (i < n && s[i] == t[i]) {
dp[i] = 0;
++i;
}
set<int> lens;
For(i, 0, m) {
lens.insert(SZ(a[i]));
}
For(i, 1, n) {
if (s[i] == t[i])
dp[i] = min(dp[i], dp[i - 1]);
for (auto j : lens) {
if (j > i) break;
string s1 = s.substr(i - j + 1, j), s2 = t.substr(i - j + 1, j);
if (has(vis, s1) && has(vis, s2)) {
int x = vis[s1], y = vis[s2];
dp[i] = min(dp[i], dp[i - j] + d[x][y]);
}
}
}
if (dp[n - 1] == INF)
return -1;
return dp[n - 1];
}
};